Light (LUX) Sensor Data Sheet

SPECIFICATIONS
> Range: 360-970nm (with VCC = 3.3V)
> Consumption: ~0.05mA

FEATURES
> Pre-conditioned analog output
> High signal-to-noise ratio
> Small form factor
> Raw data output
> Easy-to-use

APPLICATIONS
> Synchronization with a computer screen
> Optical marker detector
> Ambient light monitoring

GENERAL DESCRIPTION
Light (LUX) sensors are typically used for ambient light detection. A common need when working with biosignals is the synchronization of the recorded data with external sources (e.g. a computer screen for visual evoked potentials). If applied to the computer screen, our LUX sensor can be used to detect chromatic changes in the stimuli, hence providing a synchronization source. The LUX sensor can also be useful for optical synchronization with third-party devices (provided that the third-party device can trigger an LED), in applications where it is important to have electrical decoupling between devices.

![Fig. 1. Pin-out and physical dimensions.](image)

![Fig. 2. Typical raw LUX response to a synchronization light source (acquired with BITALINO).](image)

BELTALINO

PLUX – Wireless Biosignals, S.A.
Av. 5 de Outubro, n.° 70 – 8.
1050-059 Lisbon, Portugal
bitalino@plux.info
http://bitalino.com/

REV A

© 2015 PLUX

This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages.
Light (LUX) Sensor Data Sheet

TRANSFER FUNCTION

\[LUX(\%) = \frac{ADC}{2^n} \cdot 100\% \]

- \(LUX(\%) \) – LUX value in percentage (%)
- \(ADC \) – Value sampled from the channel
- \(n \) – Number of bits of the channel

\[^1 \] The number of bits for each channel depends on the resolution of the Analog-to-Digital Converter (ADC); in BiTalino the first four channels are sampled using 10-bit resolution (\(n = 10 \)), while the last two are sampled using 6-bit (\(n = 6 \)).